Name: ______ Date: _____

Circle Relationships

Objective

In this lesson, you will investigate relationships between lines, segments, and angles in circles.

Radius of a Circle and Tangent Lines

- A line tangent to a circle at its extreme top or bottom point is <u>horizontal</u>.
- A line tangent to a circle at its far left or right point is vertical.

- The radius of a circle is always
 perpendicular
 to the tangent at
 the point where the radius and tangent
 intersect
- Perpendicular lines have slopes that are
 opposite reciprocals
 So, their slopes have a product of -1 ...

Central, Inscribed, and Circumscribed Angles

- central angle: an angle with the center of the
 circle as its <u>vertex</u> and two <u>radii</u> as
 its sides
- inscribed angle: an angle with its vertex on the
 circle and its sides formed by two chords
 or a tangent and a chord
- ∠POR is a <u>central</u> angle, ∠<u>PQR</u> is an inscribed angle, and ∠PSR is a
 <u>circumscribed</u> angle.
- 1. If an inscribed angle and a central angle intercept the <u>same</u> <u>arc</u>, then the measure of the inscribed angle is <u>half</u> that of the central angle. $m\angle ACB = \frac{1}{2}(m\angle AOB)$
- 2. If the chord bound by the inscribed and central angles is a diameter, the central angle measures 180 °, and any inscribed angle bound by the diameter is 90 °.
- 3. If a circumscribed angle and a central angle intercept the same arc, then the angles are supplementary. $m \angle GHI + m \angle GQI = 180$

Chords

Properties of Chords

Congruent chords of a circle are equidistant from the

<u>center</u>, and they intercept congruent <u>arcs</u>.

If
$$\overline{AB} \cong \overline{CD}$$
, then $\overline{OE} \cong \overline{OF}$, and if $\overline{AB} \cong \overline{CD}$, then $\widehat{AB} \cong \overline{CD}$

The **converse** is also true:

If
$$\overline{OE}\cong \overline{OF}$$
, then $\overline{AB}\cong \overline{CD}$, and if $\widehat{AB}\cong \widehat{CD}$, then $\overline{AB}\cong \overline{CD}$

A diameter perpendicular to a chord <u>bisects</u> the chord, and a diameter that bisects a chord is also

perpendicular to the chord.

If
$$\overline{AB} \perp \overline{CD}$$
, then $\overline{AM} \cong \boxed{\textcolor{red}{\textbf{BM}}}$, and if $\overline{AM} \cong \overline{BM}$, then $\overline{CD} \perp \boxed{\textcolor{red}{\textbf{AB}}}$

The perpendicular bisector of any chord passes through the center of the circle.

$$m\angle AED = \frac{1}{2} (m \widehat{CD} + m \widehat{AB})$$

When two chords intersect, the **products** of the lengths of the line segments on each chord are the same.

$$(\underline{AE})(EB) = (CE)(\underline{ED})$$

Finding Lengths of Intersecting Chords

Chords RS and PQ intersect within circle O at point T. Find the length of segment PT.

When two chords intersect, the products of the lengths of the line segments on

each chord are equal

ightharpoonup So, $(PT)(\underline{TQ}) = (\underline{RT})(TS)$.

$$x(8) = (4)(5)$$

$$x = \frac{5}{2}$$

Tangents and Secants

Angles Formed Outside the Circle

When tangents or secants intersect outside the circle, the measure of the angle formed by those segments is equal to half the difference of the measures of the two arcs that are intercepted by the sides of the angle.

Finding an Angle Measure

Angle A is formed by two secants.

Angles Formed on the Circle

When secants, chords, or tangents intersect on a circle, an <u>inscribed</u> angle is formed.

The measure of an <u>inscribed</u> angle is equal to <u>half</u> the measure of the

intercepted <u>arc</u>.

Angle DBC is formed by the intersection of a secant and tangent.

m∠A =
$$\frac{1}{2}$$
 (m BD)
$$= \frac{1}{2} (158)^{\circ}$$

$$= \frac{79}{2}$$

Pieces of Secants and Tangents

Two Secants

The products of the distances to both the near and far points of intersection with the circle, along each secant, are **equal**.

$$(\underline{AB})(AC) = (\underline{AD})(\underline{AE})$$

$$(20)(AC) = (16)(40)$$

Secant and Tangent

The product of the distances to both the near and far points of intersection with the circle, along the secant, is equal to the square of the length of the tangent segment.

$$(\underline{AB})(AD) = (\underline{AC})^2$$

$$(4)(AD) = (10)^2$$

$$AD = 25$$

Two Tangents

When two tangents intersect, the point of intersection is the same from both points of tangency.

$$AB = AC = 14$$

Find the lengths of \overline{AC} and \overline{CB} .

$$(AC)(\underline{CD}) = (\underline{BC})(\underline{CE})$$

$$(\underline{x-4})(\underline{x}) = (\underline{2})(\underline{6})$$

$$x^2 - \underline{4} \quad x = \underline{12}$$

This is a **quadratic** equation. Rewrite equal to **zero** and solve by

factoring .

$$x^2 - 4 \quad x - 12 = 0$$

$$(x - 6)(x + 2) = 0$$

$$x = 6$$
 or $x = -2$

Since segment lengths are not <u>negative</u>, CD = 6 and AC = 2.